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TOPICAL REVIEW — Modeling and simulations for the structures and functions of proteins and nucleic acids
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RNAs play crucial and versatile roles in biological processes. Computational prediction approaches can help to
understand RNA structures and their stabilizing factors, thus providing information on their functions, and facilitating the
design of new RNAs. Machine learning (ML) techniques have made tremendous progress in many fields in the past few
years. Although their usage in protein-related fields has a long history, the use of ML methods in predicting RNA tertiary
structures is new and rare. Here, we review the recent advances of using ML methods on RNA structure predictions and
discuss the advantages and limitation, the difficulties and potentials of these approaches when applied in the field.
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1. Introduction
RNAs are macromolecules of crucial and versatile bi-

ological functions.[1–5] To fully understand their functions,
knowledge of the three-dimensional (3D) structures is es-
sential. Since experimental approaches to determinate RNA
3D structures are difficult and expensive, many computa-
tional approaches have been developed to this purpose. To
date, although template-based and homology-modeling meth-
ods could achieve high accuracies, de novo predictions still
depend on the size and complexity of the RNA, and further
improvement in predicting non-canonical interactions is re-
quired, according to the recent RNA-puzzles round III.[6] For
a comprehensive study of the recent work, we refer readers to
the relevant literature.[7–11]

Recently, machine learning (ML) techniques, particularly
deep learning based on multiplayer neural networks, have
achieved great success in characterizing, classifying, and/or
generating complex data in a broad range of fields, from image
classification, disease diagnosis, solving biological problems,
playing chess, or games to even quantum physics.[12–17] It is
exciting to investigate whether these techniques could assist in
RNA tertiary structure predictions.

In this short review, we summarize the recent advances
and applications of ML techniques in solving the RNA ter-
tiary structure prediction, including our current work. We
wish this could develop new ideas and draw novel prediction
algorithms. While there are many excellent works of using

ML techniques on predicting RNA secondary structures,[18–20]

here we focus on the significance of RNA tertiary structure
predictions.

2. Multilayer perceptron architecture for ter-
tiary structure scores
An important step for structure prediction is to evaluate

the generated structure of candidates. To this purpose, many
scoring functions have been developed, and most of them are
based on the inverse Boltzmann equation. However, these
methods need to carefully choose the proper function forms
and reference states, which is not an easy task.[8,21,22] Fur-
thermore, the functions are usually composed of only pair-
wise terms. While incorporating many-body interactions is
possible, on the contrary determining the relevant parameters
is practically hindered by the lack of sufficient experimental
data.

We built a scoring system using multilayer perceptrons
to score the RNA tertiary structure candidates. The sys-
tem is significantly different from the traditional scoring
functions.[23] The theoretical basis of this approach is based on
the universal approximation theorem, which states that a feed-
forward network with a single hidden layer can approximate
a wide variety of continuous functions when given appropri-
ate parameters.[12] We built two feed-forward multilayer per-
ceptrons, labeled as Net-1 and Net-2, respectively. They are
different in the input features. Specifically, Net-1 accepts as
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inputs the features calculated at the coarse-grained (CG) struc-
tural level, while Net-2 accepts as inputs the all-atom struc-
tural features. The output of either network is a score, which
is the similarity of the input structure to the native one. In this
work, the similarity is measured with the root mean square de-
viation (RMSD) of the input structure after optimal superim-
position with the corresponding experimental one. The choice
of input features allows great flexibility. In principle, the fea-
tures can be anything of interest. Here we cautiously chose the
probabilities of observing base couples of different types and
the probabilities of backbone atom pairs (at the CG level) at
different distance bins as inputs for Net-1, and the probabili-
ties of observing atom pairs (at the all-atom level) of different
types at different distance bins for Net-2. Taking a standard
A-helix of 50-nucleotides in length as an example, a simple
statistic gives a total number of atom pairs of 908. Among
them 48 P-C4’ pairs are within the distance of 0.3–0.4 nm,
then the probability of observing the type P-C4’ at the third
distance bin will be set to 48/908, if the bin size is set to
0.1 nm. Moreover, the number of nucleotides of the candi-
date structure and its radius of gyration along three principal
axes are also input to the networks, in order to feed the size
and shape information to the neural network.

The setups of the multilayer perceptron are described as
follows. As shown in Fig. 1, both perceptrons contain a sin-
gle hidden layer, which contains 30 nodes for Net-1 and 10
nodes for Net-2. These numbers were obtained by optimizing
the scoring performance. The activation function for the neu-
rons in the hidden layer is the hyperbolic tangent function, and
that for the neurons in the output layer is the linear function.
The loss function is the weighted mean squared error between
the predicted score and the RMSD with regards to the native
structure. The weight is proportional to the exponential of the
negative values of R, where R is the RMSD of the sample, in
order to encourage the contribution of the close-to-native sam-
ples to the loss. Furthermore, the weight is inversely propor-
tional to the number of samples in the corresponding RMSD
bin, which helps to increase the contribution of rare samples.
The networks were optimized by the gradient backpropagation
algorithm for reducing the difference between the predicted
scores and the true values.
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Fig. 1. The architecture of the multilayer perceptron used in the
work.[23] It contains a single hidden layer. The inputs are structural
features, and the output is a score that indicates the quality of the struc-
tural candidates.

The dataset contains 462 RNAs, each associated with 300
decoys. The decoys were generated with molecular dynamics

simulations (GROMACS v4.5) with the temperature gradually
increased from 300 K to 600 K. For each RNA, 300 structures
were randomly taken from the trajectories in a way that their
distribution was uniform in the RMSD range [0, RMSDmax],
where the upper bound was dependent on the RNA length. In
total we obtained 138600 structures. The dataset was ran-
domly split into the training, validation, and testing datasets
with the ratio 322 : 70 : 70. The multilayer perceptrons were
trained, validated, and tested with these three datasets, respec-
tively.

The performance of the networks was encouraging. For
the test dataset containing 70 RNAs and the associated de-
coys, the correlations between the predicted and the true val-
ues were generally good and showed a funnel-like shape.[23]

The performance was also compared with RASP,[25] which is
a state-of-the-art all-atom knowledge-based potential for as-
sessing RNA 3D structures. RASP explicitly accounts for base
pairing, base stackings, and non-canonical interactions that are
highly abundant in RNA structures. RASP was shown to be
competitive when compared to NAST, ROSETTA, and AM-
BER force fields. The comparison of our models with RASP
showed that, the enrichment score, which measures the degree
of overlap between the best-scored structures (10%) and the
most native-like structures (also 10%),[24] was 4.6 for Net-1
and 5.3 for Net-2 on average, while was 4.4 for RASP for the
same test set. As for the ability to select native structures out
of decoys, Net-1 and Net-2 ensured that the native ones were
among the top-10 scored structures for 60 out of 70 RNAs, and
52 out of 70 RNAs, respectively. In contrast, RASP gave 31
out of 70 RNAs with the same criterion.

The multilayer perceptron has many advantages in scor-
ing structural candidates. First, it could accept any features
as inputs, not just limited to the pair-wise features. Second,
the weights in the networks can be trained in an end-to-end
way. Third, it avoids to determinate the reference state, as it
is known to be difficult in the traditional way of developing
scoring functions.[21,22] However, the work described above is
rather preliminary and it can be improved significantly. First,
most inputs to the network are still pair-wise features, due to
the lack of enough training data. More complex features such
as many-body interactions will be possible with time, as more
experimental structures become available. Second, the net-
work architectures are rather simple. Presumably, deep net-
works may give better results, as it is generally believed in the
image recognition field that deep networks usually have better
performance.

3. RNA tertiary structure scoring with convolu-
tional neural networks
RNA structure prediction community may borrow ideas

from the latest image recognition field, where deep convolu-
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tional neural networks (CNNs) have become prevalent tools
for various tasks of image processing. One remarkable char-
acteristic of CNNs is their ability to extract complex patterns
after proper training, in contrast to early times when people
had to develop different operators manually in order to de-
tect different patterns in images. In the RNA work described
above, we had to determine relevant factors and invent input
forms for these factors manually. Inspired by the advance in
the image recognition field, we tried to simplify this process
and let the neural network extract the most relevant features
automatically.

We built a convolutional neural network to extract struc-
tural patterns from RNA tertiary structures and score those
structures.[26] The CNN is a VGG-like network,[27] containing
four convolutional layers with 8, 16, 32, and 64 convolutional
filters, respectively, a max-pooling layer, and a fully connected
layer, as shown in Fig. 2. The input to the network is a 3D im-
age of size 32× 32× 32 voxels, obtained by gridding a cubic
space of size 32×32×32 Å3, with the interested nucleotide in
the center. For a given RNA structure, the nucleotides are se-
lected as the interested nucleotide one by one in the sequence
order. The interested nucleotide is rotated to a specific direc-
tion and is put in the center of the cubic space, which is then
subjected to a gridding procedure with a grid size of 1 Å. After
gridding, the cubic space is converted into a 3D image. The
3D image contains three channels, corresponding to the occu-
pation number, mass, and charge in the grid, respectively. The
output of the network is a score for the interested nucleotide,
indicating the likeness of the local structure to the native struc-
ture. The score for the whole structure is the summary of the
scores of all the nucleotides.

3T323

conv 4input layer

8T283
64T83
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Fig. 2. The architecture of the CNN network in this work.[26] Note that
not all convolutional layers are shown due to space limitations. Each
cube represents a 3D image. The input layer has three channels, sim-
ilar to the RGB channels in 2D images. The output is a single score,
indicating the likeness of the input structure to the native structure.

The training dataset was initially downloaded from the
NDB website with the “RNA Only” and “Non-Redundant
RNA structures” options, resulting in 619 RNAs. Then the
RNAs with x-ray resolution > 3.5 Å were removed, and these
RNAs were further removed if they also appeared in the test
dataset or belonged to the equivalent class of the RNAs in the
test dataset. The test datasets were described subsequently.
The final collection contains 414 RNAs. These RNAs were
then subjected to high-temperature molecular dynamics (MD)
simulations with Gromacs and Monte Carlo (MC) fragment

assembly procedures with Rosetta[28,29] to generate decoys.
The MD and MC procedures led to two training datasets, re-
spectively; each containing 1.2 million samples. The MD
based dataset was used to train a network for scoring RNA
structures known to be close to the native structure, while the
two datasets were combined to train another network for scor-
ing general RNAs.

The performance of the CNN model was tested with three
datasets. The first dataset contains 85 RNAs, each associ-
ated with 500 decoys generated with MODELLER.[25] The
RMSDs of the decoys of most RNAs are less than 10 Å,
while for some larger RNAs they can range from 0 to 13 Å.
The second dataset contains 20 RNAs and 56500 decoys
generated with REMD simulations or normal-model (NM)
perturbations.[30] The RMSDs of the decoys generated with
REMD range from 0 to 8 Å and those generated with NM per-
turbations range from 0 to 5 Å. The third dataset comes from
the RNA-puzzles competition from rounds I to III, contain-
ing 18 RNAs.[6,31,32] Each RNA has 12–70 predicted models,
which were generated by the best existing RNA 3D structure
predictors. The RMSDs with respect to the experimental struc-
ture range from 2 Å to 4 Å for some RNAs while range from
20 Å to 60 Å for several long RNAs with more than 100 nu-
cleotides. In the testing procedure, each candidate structure
in the testing set was fed to the CNN network and assigned
a score. The structure with the best score was predicted as
the native one, and then was compared with the experimental
structure. The performance of the CNN network was com-
pared with that of the other four popular scoring functions, in-
cluding RASP,[25] Rosetta,[28,29] KB,[30] and 3dRNAscore.[33]

The results are shown in Table 1.

Table 1. The performance of different scoring functions. In each cell, the
first number is the number of RNAs that are correctly identified, and the
second is the total RNAs in the dataset.[26] The bold number indicates the
best one among the same dataset.

3dRNAscore KB RASP Rosetta CNN model
Dataset-I 84/85 80/85 79/85 53/85 62/85
Dataset-II 17/20 20/20 12/20 12/20 19/20
Dataset-III 5/18 – 1/18 4/18 13/18

It can be seen that for the testing dataset-I, the CNN
model ranks the fourth. For the dataset-II, it ranks the second
but only slightly worse than the KB potential. While for the
dataset-III, which is composed of structures from real com-
petitions, the CNN model ranks significantly better than the
others. Overall, the CNN model is competitive with the other
state-of-the-art potentials. Considering that most decoys in
the dataset-I and -II are obtained by perturbation of the na-
tive structure, the CNN model may need to be further trained
with structures close to the native basin of attraction.

According to the performance of the CNN model, it is
safe to infer that the model can extract relevant features out
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of data automatically. In order to understand what features
the neural networks actually learn, we tentatively plotted the
saliency maps by computing the gradient of the output score
with respect to the input values.[26] The gradients indicate how
sensitive the output is to the changes in the input, hence reveal-
ing what the important factors are for the structure. The ana-
lyzing results showed that the atoms with larger gradients in
the local environment of the interested nucleotides generally
correspond to base pairs or base stackings, consistent with the
general physical knowledge for RNA structures.[26] However,
this finding is dependent on visual inspection of experts and
is thus rather preliminary. For a better understanding the NN,
further collaborations with researches in computer science are
needed to develop more advanced tools. In the near future, it
is interesting to see if the neural networks could extract out of
data new knowledge unknown before.

4. Conformational sampling with machine
learning approaches
A powerful sampling engine that is able to efficiently and

accurately generate 3D structural candidates is of paramount
importance for a de novo tertiary structure predictor. Tradi-
tionally, 3D fragments, motifs, or small secondary elements
databases are combined with MC, Las Vegas, game algorithm,
or user-driven manipulation to generate decoys.[10] However,
the discrete nature of the traditional methods imposes inherent
problems on the coverage of the structural space and on the
development of scoring functions.[34]

Frellsen et al. offered a different solution to the sampling
problem by developing a probabilistic model of RNA tertiary
structure that allows sampling in a continuous space.[34] The
model, called BARNACLE, captures the marginal distribution
of each of the seven torsional angles of one nucleotide and
their dependence with a dynamic Bayesian network (DBN).
Specifically, the model uses a slice for each angle and the hid-
den state of each slice is dependent on the present angle iden-
tifier and the hidden state of the previous slice along the chain.
The model parameters are trained by maximum-likelihood es-
timation from experimental structures. The authors showed
that the model captures the length distribution of helices, and
is consistent with the RNA rotamer model. The authors also
performed Markov chain MC simulations with the proposal
distribution generated by the DBN, and found that the gen-
erated RNA decoys are similar to the experimental structures
even guided with a simple energy function based solely on
base pairs.

Wang et al. developed another probabilistic method for
structure modeling and sampling. The method contains a con-
ditional random fields model for tertiary structure and a tree-
guided scheme for sampling, named TreeFolder.[35] Differ-
ently from BARNACLE, the above model estimates the prob-

ability of an RNA structure conditioned on the primary se-
quence and secondary structure. The authors showed that
the model captures the structure–sequence relationship well
and generates a much higher percentage of native-like decoys
than the previous methods. Both BARNACLE and TreeFolder
methods do not use fragments to build RNA structures, and
their probabilistic nature allows an efficient as well as unbi-
ased sampling of RNA conformations.

5. Machine learning approaches in 3D modules
identification
On different line, computational efforts have been de-

voted to identifying 3D structural modules from single or mul-
tiple sequences. RNA modules are sets of recurrently observed
non-Watson-Crick (WC) base pairs embedded between WC
pairs. Their identifications are import for structure predictions
since the non-WC interactions define RNA tertiary structures
and constitute the main bottlenecks of current predictions.[36]

In contrast to the traditional structure predictors that generate
and evaluate different structures for a given sequence, these
approaches scan and evaluate different sequences for a pre-
defined structure or interaction pattern. RMDetect is a pioneer
program in the field.[37] For a specific type of 3D structural
module, RMDetect builds a Bayesian probabilistic network
with the nodes representing individual bases occupying a de-
fined structural position and the edges representing their de-
pendence. Then, it scans the sequence database and calculates
the compatible probability of the sequence with the 3D mod-
ule by threading the sequence into the corresponding Bayesian
network. RMDetect was initially designed to identify four
types of modules, including G-bulge loop, kink-turn, C-loop,
and tandem-GA loop, but it can be easily extended to other
modules. The metaRNAmodule pipline combines RMDetect
with the RNA 3D Motif Atlas and the Rfam database in order
to automate the building process of the Bayesian network.[38]

On a large-scale test, RMDetect extracted more than 22000
modules in all PDB files and, identified 977 internal loops and
17 hairpin modules with clear discriminatory power. JAR3D is
another program for identifying modules from sequences.[39]

It uses hybrid stochastic context-free grammars technique to
model the nested base pairs and insertions, and uses Markov
random fields to handle base triples. JAR3D assigns accep-
tance/rejection thresholds for motif groups and reduces the
false positive rate, which is a central challenge in matching
novel sequences to motifs. The comparison of JAR3D with
RMDetect showed the same output on 257 sequences except
63 sequences. JAR3D was designed to incorporate automat-
ically new motifs as they are solved and accumulate in the
database. The modules identification programs have been
shown to be able to improve both secondary structure and ter-
tiary structure predictions.[36,40]
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6. Electrostatic interactions in RNA structures

RNA structure modeling has a particular difficulty to
overcome – the strong electrostatic interaction between nu-
cleic acids.[7,8] Since RNA chains are highly negatively
charged, they will not fold unless the negative charges are
neutralized by metal ions. The roles of metal ions are not
only limited to charge neutralization, but also include bind-
ing to specific locations to stabilize the structure, as well
as directly mediating catalysis in some ribozymes. Previ-
ous knowledge-based potential functions, such as RASP,[25]

Rosetta,[28,29] KB,[30] and 3dRNAscore[33] energy functions,
implicitly model the electrostatic interactions by inferring
energies from observed frequencies of geometrical features.
However, such implicit treatments cannot predict the depen-
dence of RNA properties on such as salt concentrations, mul-
tivalent ions, or global versus local binding of ions.

The counterion condensation (CC) and the Poisson–
Boltzmann (PB) theory have been developed to model the
electrostatic interactions. However, the CC theory only works
well at very dilute ion concentrations while not at finite
concentrations,[41] and the PB theory ignores the correlation
between ions and significantly underestimates the effect of
multivalent ions in stabilizing RNAs.[42,43]

Recently, the tightly bound ion (TBI) model has
been developed by accounting for fluctuations and ion–ion
correlations.[44,45] The TBI model separates the tightly bound
ions from the diffusive ions in solution, and explicitly accounts
for the correlation between the tightly bound ions and the dis-
crete binding modes. The electrostatic free energy is calcu-
lated from the partition function Z, which is a summation over
the partition functions of all possible binding models. To enu-
merate the discrete ion-binding modes, the tightly bound re-
gion near the RNA surface is divided into N cells and all the
possible positions of the tightly bound ions among the cells are
then enumerated. The diffusive ions are treated with the mean-
field PB theory. The TBI model was originally based on CG
DNA helices and later extended to treat RNA tertiary folds at
the all-atoms level.[46] The TBI model has been shown to im-
prove the predictions of effects of multivalence ions on RNA
helices, hairpins, pseudo-knots, and the stability of RNA kiss-
ing complexes over wide ranges of ion concentrations when
combined with a GC model.[44–49] However, the TBI model is
not perfect when it concerns the ion binding in the vicinity of a
nucleic acids surface. Nevertheless, even all-atom force fields,
such as AMBER, do not see the exact electrostatic interaction
by using the point-charge approximation.[50]

To develop an accurate and yet efficient energy function
for the electrostatic interactions, machine-learning methods
may be helpful. For example, Li et al. optimized the parame-
ters in the AMOEBA polarizable force field using ML, genetic

algorithm techniques, and ab initio data from quantum me-
chanics (QM) calculations.[51] Their work showed that the ML
can be used in the parameterization step of traditional force
fields and achieve better performance. Bereau et al. developed
a many-body non-additive potential for small neutral organic
and biologically relevant molecules.[52] They modeled the in-
termolecular interactions with sophisticated physical models,
e.g., multipole rather than point-charge electrostatics, non-
additive rather than pairwise additive polarization, and relied
on machine learning to optimize the parameters. The model
allows accurate calculations of electrostatics, charge penetra-
tion, polarization, repulsion, and many-body dispersion.[52]

The force field developed by Wang et al. for wa-
ter molecules based on neural network (NN) is particularly
interesting.[53] The force field uses the many-body expansion
up to binary interactions and NN representation of atomic en-
ergies, employing an electrostatic embedding scheme. For
each one-body or two-body term, only the water molecules
in the QM regions are treated with NN representations, while
those in the MM regions serve as background charges to pro-
vide electrostatic embedding. This is similar to the separa-
tion of tightly bound ions from diffusive ions found in the
TBI model.[44,45] The authors built two sets of NN based force
fields: nonpolarizable and polarizable force fields, and showed
that the first one has already behaved well, since the polariza-
tion and many-body effects were implicitly considered in the
electrostatic embedding scheme. Furthermore, according to
the authors, the force field shows high level of QM accuracy
and low computational costs. Presumably, similar ideas may
be implemented to treat the strong electrostatic effect in RNA
molecules.

In a recent review, Popelier discussed the next-next gener-
ation force field, called QCTFF (Quantum Chemical Topology
Force Field).[54] The author suggested that only a machine-
learning model could cope with the complexity of the atomic
environment and learn how energy quantities vary with the
coordinates of the atomic neighbors. QCTFF is a machine
learning method based on kriging. The term kriging refers
to a group of statistical techniques that interpolate the value
of a random field at an unobserved location from the observa-
tion of its values at nearby locations. The kriging algorithm
maximizes the likelihood function of recovering the observed
input data, which come from pur QC computations or exper-
imental data. The model predicts the monopole and dipole
moments, self-energy, and exchange energy as function of
the nuclear coordinates of the atoms. The force field abol-
ishes all traditional force field expressions such as the Hooke’s
law and the Lennard–Jones potential model. The force field
has been tested on several small molecules such as water,
methanol, propane, and N-methylacetamide and gave very ac-
curate results.[54]
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7. Learning from protein structure predictions
RNA structure prediction may borrow ideas from its sis-

ter field, the protein structure prediction, where researchers
have developed many ingenious machine learning algorithms
for predicting protein structures.[55–57] Therefore, it is inter-
esting to check the most recent advances in this field and see
if they can be applied in RNAs.

In the recent Critical Assessment of Protein Structure
Prediction (CASP13),[58] a blind assessment of the state of
the protein folding predictions, the AlphaFold system pre-
dicted high-accuracy structures for 24 out of 43 free-modeling
domains, showing significantly better performance than the
second-best method.[59] It demonstrated the power of machine
learning method in protein structure predictions.

AlphaFold created three neural networks for free-
modeling predictions. The first network, maybe the most im-
portant one, utilizes evolutionary covariation data to predict
the distances between pairs of residues. The network con-
sists of 220 two-dimensional residual blocks with 128 chan-
nels and dilated 3 × 3 convolutions, as well as dropout and
batch normalization layers. A distance potential is also in-
ferred from the negative log-likelihood of the distances pre-
dicted by the network. The second neural network, called
GDT-net, takes the predicted distances, along with the mul-
tiple sequence alignment (MSA) features, the Cβ coordinates,
and the sine/cosine of the torsion angles as inputs, and then
predicts the GDT TS score of the given candidate structure.
The GDT-net begins with a deep resnet stack, followed by 18
residual blocks with 3× 3 dilated convolutions, a mean pool-
ing layer, and a softmax layer. The third neural network uses
an end-to-end trained generative model of backbone torsion
angles, conditioned on the sequenced and MSA features to cre-
ate libraries of fragments. The major components of the net-
works include a 2D residual network and a 1D convolutional
LSTM encoder. The first component encodes the conditioning
data and the second models the sequence dependence of the
torsional angles. The authors tried three different combina-
tions of the above components with simulated annealing algo-
rithm and direct gradient descent optimization of the potential
for structure prediction. It was found that the three systems
performed similarly. The authors drew two main conclusions.
First, the methods relied heavily on distance predictions based
on coevolutionary data; second, the good results were due to
the fact that deep learning allows to extract features from data
without making heuristic assumptions about the data.

The coevolutionary data have been also used in
RNA structure prediction and significantly improved its
performance.[60–62] It has been shown by Xiao’s group that
the incorporation of the contact information obtained by direct
coupling analysis (DCA) of nucleotide coevolution greatly in-
creased the accuracy of their 3dRNA system, particularly in

predicting multi-branch junctions.[62–65] The DCA analysis in
the above works assumed a global statistical model of nu-
cleotide correlation, such as a generalized Potts model. How-
ever, machine-learning techniques can further improve the
performance, since it makes no assumption on the data and
can predict distance rather than just contacts. For example,
He et al. compared the performance of different approaches
of inferring RNA contacts and found that a deep learning
model of fully convolutional neural network improved the per-
formance of DCA.[66] More examples can be found in the
literature.[67,68]

It should be noted that a simple transferring of the
approaches developed for protein structure prediction may
not work for RNAs, since the latter is very flexible in the
structures,[69] and the available experimental structures are far
less than the former. As of the year 2020, the number of PDB-
only structures deposited in the PDB database has exceeded
152000; whereas the number of RNA-only was less than 1500.
According to the latest version (14.2) of the Rfam database,[70]

there are 3024 reported RNA families while only 99 families
have 3D structural information. Therefore, more sophisticated
machine learning techniques, for example few-shot learning or
meta-learning approaches,[71–73] need to be considered.

8. Conclusions and perspectives
The adoption of machine learning approaches in RNA

structure predictions has led to many promising results, open-
ing a new way of thinking and solving the problem. Unlike
traditional approaches of developing knowledge-based poten-
tials, multilayer perceptrons need no explicit form of functions
as input and they are very flexible in the choice of input fea-
tures. Furthermore, the convolutional neural networks are able
to discover relevant features on their own, if they are provided
with a proper dataset and well trained. These characteristics
may help to overcome difficult problems such as modeling
many-body interactions, for which actual function form can-
not be easily determined.

There are several challenges with regards to this research
direction. First, the small number of experimental RNA struc-
tures limits the performance of machine learning-based ap-
proaches. To alleviate the problem, few-shot learning and
meta-learning techniques may be considered,[71–73] and phys-
ical knowledge could be incorporated into the neural networks
as a prior to reduce the hypothesis space or direct the opti-
mization process. Second, neural networks are usually treated
as an inscrutable black box, lacking transparency and explana-
tions. It is necessary to collaborate with researches in machine
learning field to design new network architectures with higher
interpretability or new analyzing tools to dissect the network.
In summary, the research on utilizing machine learning ap-
proaches for RNA structure predictions is undoubtedly still

108704-6



Chin. Phys. B Vol. 29, No. 10 (2020) 108704

premature, and more effort needs to be made to push forward
the front of the field.
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